Approximation numbers of integral operators on the sphere

نویسندگان

  • Tháıs Jordão
  • Valdir A. Menegatto
چکیده

This work derives sharp estimates for approximation numbers of positive integral operators on the sphere when the generating kernel satisfies an abstract Hölder condition defined by spherical convolutions with uniformly bounded bi-zonal kernels. The estimates are obtained via finite rank operators defined by both, certain generalized Jackson kernels and the operators appearing in the Hölder condition. In the case the generating kernel of the integral operator is continuous, the estimates imply decay rates for the eigenvalues of the integral operator. Estimates for approximation numbers of integral operators acting on a Hilbert space has been a topic of study for a long time. The spectral theory surrounding the well-known Mercer’s theorem forces a basic decay to hold and better ones can be reached at the cost of additional assumptions on the generating kernel. Usually, a differentiability-like assumption on the kernel improves the basic decay quite a bit ([1]). The use of Hölder-type assumptions is not either uncommon or exclusive of the spherical setting, as one can verify in many research works (see for example, [2, 3]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rough approximation operators based on quantale-valued fuzzy generalized neighborhood systems

Let $L$ be an integral and commutative quantale. In this paper, by fuzzifying the notion of generalized neighborhood systems, the notion of $L$-fuzzy generalized neighborhoodsystem is introduced and then a pair of lower and upperapproximation operators based on it are defined and discussed. It is proved that these approximation operators include generalized neighborhood system...

متن کامل

Solving infinite system of nonlinear integral equations by using ‎F-‎generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.

In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...

متن کامل

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

On genuine Lupac{s}-Beta operators and modulus of continuity

In the present article we discuss approximation properties of genuine Lupac{s}-Beta operators of  integral type. We establish quantitative asymptotic formulae and a direct estimate in terms of Ditzian-Totik modulus of continuity. Finally we mention  results on the weighted modulus of continuity for the genuine operators.

متن کامل

A new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind

In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013